

中科瑞泰(北京) 生物科技有限公司

Tel: 400-699-0631

http:// <u>www.real-tims.com.cn</u> E-mail: <u>real-times@vip.163.com</u>

Tris-醋酸-SDS-PAGE 电泳试剂盒(变性电泳)

货号	名称	规格
RTD6155	Tris-醋酸-SDS-PAGE 电泳试剂盒(变性电泳)	10 次

● 产品组成:

) HH >TT />			
货号	名称	规格	保存
RTD6154-0308	3-8% RealPAGE Tris 醋酸预制胶(U 型板,通用型,12 孔)	10 板/盒	4℃
RTD6155-01	20 ×样品还原剂	1 ml	4℃ (配制后-20℃贮存)
TA1510	400×抗氧化剂	400×抗氧化剂 15 ml	
TA050	10×Tris-醋酸-SDS 电泳缓冲液(变性电泳,溶液型) 500		RT
PL112-01	5×MonoClolor 蛋白上样缓冲液 (变性,非还原)	1 ml	-20℃
RTD6202	FastBlue 蛋白快速染色液	500 ml	RT
TA5030P	10×Tris-醋酸转膜缓冲液(湿转,粉末型)	500 ml	RT
	说明书	一份	-

● 产品简介:

Tris-醋酸-SDS-PAGE 凝胶电泳适合于分离高分子量蛋白,可以有效分离 50-500 kD 范围内蛋白; 电泳体系呈中性,抑制半胱氨酸的二次氧化,防止二硫键在凝胶中交联; 在变性还原电泳中,电泳缓冲体系中加入抗氧化剂,整个电泳过程都在还原条件下进行,有效防止二硫键的形成。

本公司提供的 Tris-醋酸-SDS-PAGE 电泳试剂盒包含预制胶、蛋白上样、蛋白电泳、染色及转膜所需的全部试剂。试剂盒配套的预制胶为梯度凝胶,浓度为 3-8%,厚度为 1.1 mm,12 齿,每个泳道可以上样最大 30 µl 样品。

本试剂盒用于蛋白变性电泳,本试剂盒可以使用 10 次。

● 贮存及运输:

按照标签温度贮存: 试剂盒常温运输。

● 使用说明:

1. 实验准备:

- 1.1 20×样品还原剂为干粉,4℃贮存。用前加入 1ml 超纯水震荡彻底溶解后使用,已经溶解的 20×样品还原剂-20℃贮存。
- 1.2 400×抗氧化剂为干粉,常温贮存。用前加入 15 ml 超纯水震荡彻底溶解后使用,已经溶解的 400×抗氧化剂-20℃贮存。

2. 电泳:

2.1 拆开预制胶包装,将预制胶安装在合适的电泳槽中。

注: 伯乐 Mini III 或 Mini-PROTEAN Tetra Cell, 天能 VE-180, 六一 24K 系列电泳槽请确保密

封条的安装方向(如图)。

六一其他系列,君意东方 JY-SCZ2/4,百晶

BG-verMINI 等电泳槽可以直接使用预制胶。

不兼容 Thermol 系列电泳槽。

- 2.2.1 外槽缓冲液: 取适量体积 1×电泳缓冲液用于外槽缓冲液。
- 2.2.2 内槽缓冲液:对于还原样品电泳,200 ml 1×电泳缓冲液中加 0.5 ml 400×抗氧化剂,混合均匀后用于内槽缓冲液。对于非还原样品电泳,直接在内槽中加入 1×电泳缓冲液,不要添加 400×抗氧化剂。

2.3 准备上样样品:

注: 表格以配制 10 μl 样品为例, 其他体积按照比例调整。

	总体积 10 μl	
组份	非还原样品	还原样品
蛋白样品	xμl	xμl
5×MonoClolor 蛋白上样缓冲液 (变性,非还原)	2 µl	2 µl
20×样品还原剂	-	0.5 µl
超纯水	补至 10 μl	
	95℃ 10 分钟	

2.4 电泳过程:

在电泳槽的内槽内加入 1×电泳缓冲液(让电泳缓冲液漫过加样孔),轻轻的拨出梳子,用 1ml 吸头冲洗加样孔 3 次:随后在电泳槽外槽加入适量的 1×电泳缓冲液。上样,电泳。

	11-11-11-11-11		111 - 1
恒电压	起始电流	结束电流	电泳时间
150V	40-55 mA/板胶	25-40 mA/板胶	60+min
注: 冰浴电泳 (可选)			

3. 染色:

- 3.1 将电泳后的 PAGE 胶取下放入塑料容器中,加入适量 FastBlue 蛋白染色液(以刚刚覆盖过胶面为适),摇床常温摇动,条带 5-10 分钟即可见(蛋白含量高于 1 μg 条带)。
- 3.2 摇床常温继续摇动 15-30 分钟至条带清晰可见。
- 3.3 加入适量蒸馏水脱色,期间更换 1-2 次蒸馏水,摇床常温摇动 10-15 分钟至背景干净。
- 3.4 观察保存结果。

4. 转膜:

4.1 转印膜选择:

Tris-醋酸凝胶转膜可以使用 NC 膜和 PVDF 膜,需要选择 0.45 µm 孔径。PVDF 膜使用前注意需要用甲醇润湿活化。

4.2 10×Tris-醋酸转膜缓冲液(溶液型)配制:

将 10×Tris-醋酸转膜缓冲液(湿转,粉末型)粉末溶解于 500 ml 超纯水中,即配成 500 ml 10×Tris-醋酸转膜缓冲液(溶液型),不要调节 pH, pH~7.2。

4.3 准备 1×转膜缓冲液:

		1×即用型转膜缓冲液 配制量 1 升		
	10×Tris-醋酸转膜缓冲液(溶液型)	100 ml		
		变性蛋白	非变性蛋白	
∠20 kD 疋白	无水甲醇	20%	5-10%	
<20 kD 蛋白	SDS	0.01%	0.01%	
20-80 kD 蛋白	无水甲醇	10%	0-5%	
	SDS	0.05%	0.05%	
> 80 kD 蛋白	无水甲醇	10%(NC 膜)	0%	
	九八十時	0-5% (PVDF 膜)	U%	
	SDS	0.1%	0.1%	
	超纯水	定容至 1 升, 不要调节 pH, pH~7.2		

注:甲醇和 SDS 在转膜中有拮抗作用。甲醇使蛋白更加结合在膜上,而 SDS 让蛋白更加离开膜。 因此对大蛋白转膜来说,多加 SDS,少加甲醇;而对小蛋白转膜,多加甲醇,少加 SDS。

4.4 转膜条件:

以下转膜条件仅供参考,客户针对自己的目的蛋白,最好经过**1-2**次预实验后,确定最佳的转膜条件。

膜孔径	蛋白大小	稳流	建议时间	降温措施
0.22 µm	低于 20 kD	200 mA	~30 分钟	不需要
0.45 µm	20-50 kD	300 mA	~45 分钟	需要
0.45 µm	50-200 kD	350 mA	~50 分钟	需要
0.45 µm	高于 200 kD	350 mA	~2.5-4.5 小时	需要